Back to blog
Havish Logo
havish
published on 2025-01-28 • 12 min read

Optimizing Database Performance in Spring Boot Applications

Database performance is often the bottleneck in enterprise Spring Boot applications. As your application scales, inefficient database queries can bring your system to a crawl. This comprehensive guide covers advanced strategies for optimizing database performance in Spring Boot applications.

Common Performance Bottlenecks

Before diving into solutions, let's identify the most common database performance issues:

  • N+1 Query Problems: Loading related entities in separate queries
  • Missing Indexes: Queries scanning entire tables instead of using indexes
  • Inefficient JPA Queries: Complex queries that could be optimized
  • Poor Connection Pool Configuration: Inadequate connection management
  • Lack of Caching: Repeated queries for the same data

Optimizing JPA Queries

The first step is to optimize your JPA queries. Here's how to solve the N+1 problem:

UserRepository.java
@Repository
public interface UserRepository extends JpaRepository<User, Long> {
    
    // Bad: Causes N+1 problem
    @Query("SELECT u FROM User u WHERE u.active = true")
    List<User> findActiveUsers();
    
    // Good: Use JOIN FETCH to load related entities
    @Query("SELECT u FROM User u JOIN FETCH u.orders WHERE u.active = true")
    List<User> findActiveUsersWithOrders();
    
    // Even better: Use @EntityGraph for flexibility
    @EntityGraph(attributePaths = {"orders", "profile"})
    @Query("SELECT u FROM User u WHERE u.active = true")
    List<User> findActiveUsersOptimized();
}

Implementing Caching Strategies

Caching can dramatically improve performance. Spring Boot provides excellent caching support:

UserService.java
@Service
@Transactional(readOnly = true)
public class UserService {

    @Cacheable("users")
    public User findById(Long id) {
        return userRepository.findById(id)
                .orElseThrow(() -> new UserNotFoundException("User not found"));
    }

    @CacheEvict(value = "users", key = "#user.id")
    public User updateUser(User user) {
        return userRepository.save(user);
    }

    @Caching(evict = {
        @CacheEvict(value = "users", key = "#id"),
        @CacheEvict(value = "userStats", allEntries = true)
    })
    public void deleteUser(Long id) {
        userRepository.deleteById(id);
    }
}

Connection Pool Optimization

Proper connection pool configuration is crucial for high-performance applications:

application.yml
spring:
  datasource:
    hikari:
      maximum-pool-size: 20
      minimum-idle: 5
      idle-timeout: 300000
      max-lifetime: 1200000
      connection-timeout: 30000
      leak-detection-threshold: 60000
  jpa:
    hibernate:
      ddl-auto: validate
    properties:
      hibernate:
        jdbc:
          batch_size: 20
        order_inserts: true
        order_updates: true
        generate_statistics: false

Monitoring and Profiling

To optimize effectively, you need to measure performance. Here are essential monitoring strategies:

  1. Enable SQL Logging: Use spring.jpa.show-sql=true in development
  2. Use Spring Boot Actuator: Monitor database metrics with /actuator/metrics
  3. Implement Custom Metrics: Track query execution times and cache hit rates
  4. Database Profiling: Use database-specific tools to analyze slow queries
  5. APM Tools: Consider tools like New Relic or AppDynamics for production monitoring

Advanced Optimization Techniques

Batch Processing Example
@Transactional
public void processBatch(List<Order> orders) {
    int batchSize = 20;
    
    for (int i = 0; i < orders.size(); i++) {
        orderRepository.save(orders.get(i));
        
        if (i % batchSize == 0 && i > 0) {
            // Flush and clear the persistence context
            entityManager.flush();
            entityManager.clear();
        }
    }
}

By implementing these optimization strategies systematically, you can achieve significant performance improvements in your Spring Boot applications. Remember to always measure before and after optimization to validate the impact of your changes.