VULCAN

Venusian Ultra Low Cloud Aerobot Navigator

TEAM 8

Aaralyn Wright, Ameer-Uddin Maniar, Anthony Huanca, Austin Cline, Benjamin Boroujerdi, Benson Zhuo, Christina Cebollero, Dalton Pedersen, Havish Pallerla, Jaden Sicotte, Rochelle Xavier, Vahin Pichairaj

	AGENDA	
\rightarrow	Mission Overview & Science Objectives	
\rightarrow	Major Requirements & Constraints	
\rightarrow	Vehicle Design	
\rightarrow	Science Instrumentation and Payload	
\rightarrow	Overall Mission Cost & Timeline	
\rightarrow	Next Steps	

VULCAN Team

Austin Cline Project Manager

Christina Cebollero
Deputy Project
Manager of Resources

Benjamin Boroujerdi Lead Systems Engineer

Dalton Pedersen Chief Scientist

Benson Zhuo Electrical Engineer, Computer Hardware Engineer

Anthony Huanca Mechanical Engineer, Scientist

Vahin Pichairaj Mechanical Engineer, Electrical Engineer

Rochelle Xavier
Thermal Engineer

Jaden SicotteMission Assurance
Specialist, Scientist

Aaralyn WrightProgram Analyst,
Outreach Officer

Ameer-Uddin Maniar Scientist, Mission Assurance Specialist

Havish Pallerla Scientist, Program Analyst

Mission Requirements

Req#	Requirement ~	Rationale v
SYS.00	The system will investigate how Venus' planetary surface interacts with it's atmosphere	Aligned with Decadal question 6.4 (see science traceability narrative)
SYS.01	The system will survive the Venusian atmosphere for at least 36 hours	Previous Venusian aerobot missions (such as Vega in 1985) lasted approximately 46 hours
SYS.02	The system must not exceed 1m x 1m x 1m when stored in payload configuration	Defined by the launch and landing provider
SYS.03	The system must not exceed a total mass of 50 kg	Defined by the launch and landing provider
SYS.04	The system shall send and receive data to and from the orbiting Primary Spacecraft for relay back to Earth	Necessary for operations
SYS.05	The system will maintain safe operating temperatures for the duration of the mission	Necessary for operations
SYS.06	The system will maintain sufficient power for all subsystems for the duration of the mission	To enable peak operating conditions and prevent failure due to excessive heat
SYS.07	The system will handle all onboard computing requirements including for processing of relayed commands, semi-autonomous decision making, and data storage	Necessary for operations
SYS.08	The system will be capable of vertical manuevering, as well as limited attitude adjustment and lateral movement	To allow for marginal mobility and flexibility for data acquisition as the mission proceeds, as well as to avoid hazards
PM.00	The program will not exceed \$200M in cost	Defined by customer
PM.01	The Aerobot system will be ready for integration with other mission systems by October 1st, 2028 at GSFC	Defined by customer
PM.02	The system will be ready for launch by March 1st, 2029 at KSC	Defined by customer
SCI.01	The system will determine the state of past and current volcanic activity on the surface of Venus	Derived from STM
SCI.02	The system will determine radiation amongst greenhouse gases in the atmosphere	Derived from STM
SCI.03	The system will determine the composition and interactions of cloud particles	Derived from STM
SCI.04	The system will determine the composition and distribution of cloud particles	Derived from STM

SCI.06	The system will determine the surface deformation and tectonic activity	Derived from STM
SCI.07	The system will determine Venusian surface composition	Derived from STM
INST.01	The system will feature an instrument capable of identifying specific wavelengths of SO2, H2O, CO, OCS, S2, HCI, and HF	Derived from STM
INST.02	The system will feature an instrument capable of detecting wavelength-specific greenhouse gas emissions (CO2, CH4, N2O, flourinated gases) and absorptions of heat	Derived from STM
INST.03	The system will feature an instrument capable of spectroscopy to identify gas composition and chemical transformations	Derived from STM
INST.04	The system will use laser reflectivity to map cloud opacity levels (ex: MOLA)	Derived from STM
INST.06	The system will feature an instrument capable of radar and topographic mapping	Derived from STM
INST.07	The system will feature an instrument capable of spectroscopy to identify elemental composition	Derived from STM
ENV.00	The system will maintain operability at average temperatures of 475 degrees Celsius (900 degrees Fahrenheit)	To enable peak operating conditions and prevent failure due to excessive heat
ENV.01	The system will maintain operability under corrosive conditions, including (but not limited to) extensive sulfuric acid droplet exposure	To prevent failure due to environmental exposure and degradation
CDH.00	System will be capable of receiving, processing, storing, and sending data, along with issuing commands to other subsystems	Necessary for operations
CDH.01	The system will be capable of transmitting data to the primary spacecraft	Necessary for operations
MECH.00	The system will feature an onboard system for control of the Aerobot's altitude	To allow for marginal mobility and flexibility for data acquisition as the mission proceed as well as to avoid hazards
MECH.01	The system will feature a framing and external structure sufficiently strong enough to withstand Venusian winds reaching up to 370 km/hr	In order to maintain structural integrity throughout mission timeline
MECH.02	The system will feature a limited propulsion system for attitude adjustments and minor manuevering within the atmosphere	To allow for marginal mobility and flexibility for data acquisition as the mission proceed as well as to avoid hazards

Science Traceability Matrix

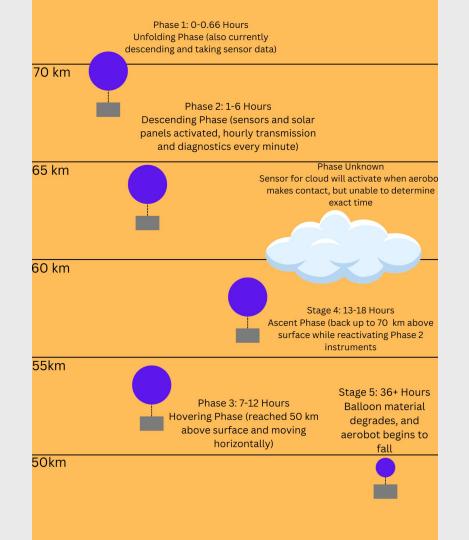

Saianas Caala	Science Objectives	Science Measure	ement Requirements	Instrument Perform	anas Daguiramanta	Predicted Instrument	Instrument	Mission Requirements					
Science Goals	Science Objectives	Physical Parameters	Observables	instrument Perform	Performance		mstrument	Mission Requirements					
Science Goals How do planetary surfaces and interiors influence and interact	Determine the state of past and current volcanic activity on the	Identify trace gases that indicate volcanic outgassing (SO2, H2O,	identify specific	Concentration for Detection	1 ppbv	0.5 ppbv	TLS (Tunable Laser Spectrometer) Mars	Vehicle must be able to shift altitude					
	surface of Venus	CO, OCS, S2, HCl, and HF)		Effective path length	15 meters	16.8 meters	Curiosity Mission						
	Determine radiation amongst	Identify the signatures and radiation levels of	Detect wavelength-specific	Spectral range	2.32-4.35 µm	2.2-4.3 µm	SOIR (Solar Occultation in the Infrared instrument)	Vehicle must be navgiate horizontally torwards clouds and areas of interest to maintain optimal sensor range					
How do planetary	greenhouse gases in the atmosphere	greenhouse gases (CO2, CH4, N2O, flourinated gases)	greenhouse gas emissions and absorptions of heat	Resolving power	23,200-43,100 lambda/ delta lambda	23,200-43,100 lambda/ delta lambda	Venus Express Mission						
	Determine the composition and interactions of cloud particles		Use spectrometry to identify gas composition and chemical transformations	Pressure Stabilization	1/2000	1/2000	CRDS (Cavity Ring-Down Spectroscopy)						
atmospheres? - (Origins, Worlds, and Life: A				Effective Path Length	20 km	Up to 20 km							
Decadal Strategy for Planetary Science and Astrobiology 2023-2032)	Determine the composition and		Use laser reflectivity to map cloud opacity levels (ex: MOLA)	Wavelength	355 nm (UV) & 1064 nm (IR)	355 nm (UV) & 1064 nm (IR)	LIDAR (Light Detection						
,	distribution of cloud particles			Vertical resolution	100m	100 m	and Ranging)						
				Range	900 km	best accuracy 10cm,							
	Determine the surface	Identify fault lines, rift zones and deformation	t on Use radar and topographic mapping	Look Angle	±4.5°	±4.5°							
	deformation and tectonic activity	features on Venus' surface		Radar Frequency	35.75 GHz	35.75 GHz (.86cm)	KaRIn Radar Altimeter						
						The state of the s		Surface		Swath width	120 km	120 km (2 x 60km)	

Science Objectives

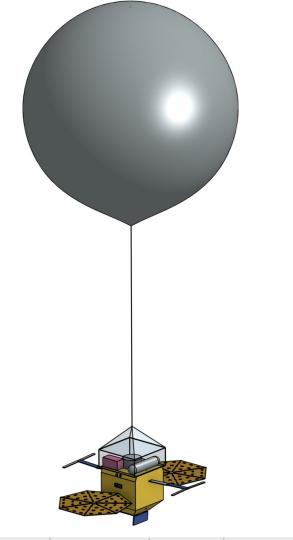
Science Objectives	Science Measure	ement Requirements
Science Objectives	Physical Parameters	Observables
Determine the state of past and current volcanic activity on the surface of Venus	Identify trace gases that indicate volcanic outgassing (SO2, H2O, CO, OCS, S2, HCl, and HF)	Use spectrometry to identify specific wavelengths of SO2, H2O, CO, OCS, S2, HCl, and HF
Determine radiation amongst greenhouse gases in the atmosphere	Identify the signatures and radiation levels of greenhouse gases (CO2, CH4, N2O, flourinated gases)	Detect wavelength-specific greenhouse gas emissions and absorptions of heat
Determine the composition and interactions of cloud particles	Identify chemical makeup and interactions within Venus' clouds	Use spectrometry to identify gas composition and chemical transformations
Determine the composition and distribution of cloud particles	Identify cloud particle distribution	Use laser reflectivity to map cloud opacity levels (ex: MOLA)
Determine the surface deformation and tectonic activity	Identify fault lines, rift zones, and deformation features on Venus' surface	Use radar and topographic mapping

- The primary science objectives of the VULCAN mission are to investigate active geologic and atmospheric processes on Venus
- Focusing on:
 - Volcanic Activity
 - Greenhouse Gas Dynamics
 - Cloud Chemistry and Distribution
- Each objective is key to unraveling
 Venus' past and why it diverged so drastically from Earth

Mission Location



- Ozza Mons, a potentially active shield volcano.
- Ozza Mons is roughly 500 km in diameter.


- Maat Mons is the tallest volcano on the surface of Venus
- Maat Mons rises ~8 km above the mean planetary radius and ~5 km above the surrounding plains.
- Maat Mons is roughly 395 km in diameter.

Concept of Operations

VULCAN Aerobot Design

Mechanical Subsystem Overview

- Structural Integrity
- Protect and support scientific payload
- Enable navigation and data relay

Mechanical Subsystem Requirements

Req#	Requirement	Rationale	Parent Req	Child Req	Verifica tion Method	Validation Method	Req met?
MECH.00	The system will feature a framing and external structure sufficiently strong enough to withstand the Venusian atmosphere	In order to maintain structural integrity throughout mission timeline	SYS.0	MECH.0 1.1 MECH.0 1.2 MECH.0 1.3	Test	Full-Scale Structural Demonstration in Relevant Environment	Met
MECH.00	The frame should withstand sulphuric acid clouds	The clouds in the atmosphere are made of sulphuric acid	-	- %	Test	Validate by subjecting frame to strong acids	Met
MECH.00 .2	The frame should withstand winds reaching up to 370 km/hr	The venusian atmosphere experiences strong winds	_	-	Test	Validate through wind tunnel testing at 30 m/s (plus margin).	Met
MECH.00 .3	The frame should withstand lightning strikes	Some missions, such as the Soviet Venera, have detected lightning-like activity	-	- ×	Test	Validate by running high voltage through frame	Met
MEGLICA	The system will feature a limited propulsion system for altitude adjustments and minor maneuvering within the atmosphere	To allow for marginal mobility and flexibility for data acquisition as the mission proceeds, as well as to avoid hazards	SYS.0	PROP.00	Inspecti	Verify performance metrics (thrust, response time, control authority) against mission requirements for flight within the dense Venusian atmosphere.	Met

MECH.02		Necessary for operations	SYS.0 8	NAV.00 NAV.01	Test	The system's sensor suite is validated by integrating it into hardware-in-the -loop tests and environmental chamber maneuvers that simulate Venusian conditions to confirm accurate orientation, position, and altitude determination.	Met
MECH.02	sensors The system will contain all relevant instruments, sensors, etc. within a 1m x 1m x 1m volume, with opportunity for		8	NAV.01	Test	Conduct a final integration fit check to confirm the entire system (in its stowed	Met
	expansion beyond this volume upon detachment from the		SYS.0			configuration) does not exceed 1 m in	Met
месп.03	בטו	landing provider			on	any dimension. Perform an official mass measurement (e.g., using calibrated	wiet
	All system materials will be chosen to minimize weight and ensure a total weight less than 50	Defined by the	SYS.0		Analysi	scales) once all components are integrated to ensure the total system mass is	
MECH.04		landing provider	3	-	s	under 50 kg.	Met

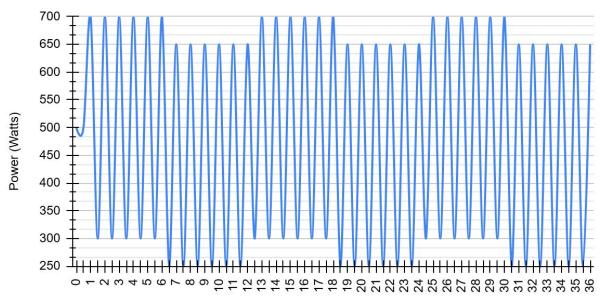
Mechanical Subsystem Components

Subassembly	Mass	Dimensions (L×W×H)	Max Power(W)
Mechanical Subsystem			
Primary Structure (Chassis)	10	0.6 m × 0.6 m × 0.4 m	0
Instrument & Sensor Mounting Assembly	2	0.3 m × 0.3 m × 0.2 m	0
High-Temperature Data Communication Antenna Assembly	1	0.3 m × 0.3 m × 0.2 m	10
Aerobot Flight Control & Propulsion Support	3	0.5 m × 0.5 m × 0.3 m	20
Landing Gear & Impact Attenuation Assembly	2	0.4 m × 0.4 m × 0.3 m	0
Post-Landing Data Acquisition Module (LDAM)	1	0.2 m × 0.2 m × 0.2 m	15

Power Subsystem Overview

- The power subsystem will provide power to to enable the operations of all other subsystems, including mechanical, CDH, thermal, and payload.
- This subsystem must have meticulous fault detection, as a singular short or blown component can derail the entire mission.
- This subsystem is made up of four main subassemblies: power generation, power storage, power distribution, and power management.

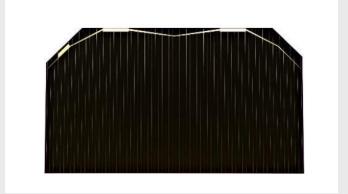
2.1.2.1 Power Subsystem Requirements


Req#	Requirement	Rationale	Parent Req	Child Req	Validation Method	Req met?
POW.0	The power subsystem shall power all operations on the spacecraft	Necessary for operations	ELEC.0-4	POW.0.0-3	Demonstration	Met
POW.0.0	The power generation subassembly shall generate power with solar panels	Without RTG, it was determined that solar energy was the most optimal power generation method	POW.0	POW.0.0.0-5	Demonstration	Met
POW.0.1	The power storage subassembly shall store power using solid-state batteries	Solid-state batteries will allow for reliable energy storage with higher energy density and greater reliability than traditional liquid electrolyte batteries	POW.0	POW.0.1.0-3	Demonstration	Met
POW.0.2	The power distribution subassembly must provide the appropriate amount of power to each subsystem	Ensures that each subsystem is receiving the appropriate amount of power, minimizing energy waste and preventing component damage	POW.0	POW.0.2.0-5	Test	Met
POW.0.3	The power management subassembly must monitor the power subsystem and send data to the CDH subsystem	Allows CDH subsystem to make decisions based on power subsystem status	POW.0	POW.0.3.0-5	Test	Met
POW.0.0.0	The solar panel's photovoltaic (PV) cells must be able to generate 300 watts of power continuously for normal operations	300 watts of power are required for normal operations based on the power draw of the other subsystems	POW.0.0		Test	Met
POW.0.0.1	The PV cells must be able to generate 700 watts of power for high-energy operations	700 watts of power are required for high-energy operations based on the power draw of the other subsystems	POW.0.0		Test	Met
POW.0.0.2	Solar panels will use corrosion resistant materials and coatings to prevent corrosion by Venus' atmosphere	Ensures solar panels can operate even under corrosive properties of Venus' atmosphere	POW.0.0		Demonstration	Met

		· · · · · · · · · · · · · · · · · · ·			_
POW.0.0.3	Solar panel must be mounted firmly and have folding capabilities by integrating with the mechanical subsystem	Must be able to unfold solar panels after the aerobot is deployed and during low sunlight availability periods. It must be mounted firmly due to the high speed winds of Venus	POW.0.0	Demonstration	Met
POW.0.0.4	The photovoltaic cells must be connected in parallel	Having photovoltaic cells connected in parallel provides more robust protection against shading, one cell doesn't drastically reduce performance, and is useful when high-voltage is not needed.	POW.0.0	Demonstration	Met
POW.0.0.5	Solar panels shall use reflective coatings, thermal coatings, and heat sinks, to maintain a temperature of -45°C to 85°C	Ensures solar panels are at acceptable temperature range for optimal performance	POW.0.0	Test	Met
POW.0.1.0	Power storage system must be able to store 1000 Wh	Since solar power generation conditions are ideal on Venus, it was determined that this was the ideal value for power storage	POW.0.1	Test	Met
POW.0.1.1	Power storage system must maintain a temperature of -45 to 85 by integrating with the thermal management subsystem	This is the safe temperature range for optimal performance of the solid-state batteries	POW.0.1	Test	Met
POW.0.1.2	Power storage system must be contained in vibration-resistant casings	This ensures that the power storage system is protected against physical damage, as solid-state batteries are more vulnerable in this area	POW.0.1	Demonstration	Met
POW.0.1.3	Power storage system must have overcharge protection to prevent overcharging of batteries	This ensures that batteries are not damaged by overcharging	POW.0.1	Test	Met
POW.0.2.0	Power distribution unit (PDU) shall use DC-DC converters to convert voltage to appropriate levels for all components	Different components have different ideal voltage levels for operations	POW.0.2	Test	Met
POW.0.2.1	PDU shall have relays and power switches to	Subsystems have a variety of requirements for power and it is necessary to to connect and disconnect from	POW.0.2	Demonstration	Met

	r				í .
	connect/disconnect other subsystems/assemblies	power for safety reasons / lack of use			
POW.0.2.2	PDU shall have a power conversion unit (PCU) to convert from AC-DC and vice versa	Other subsystems and sub-assemblies need both AC and DC power	POW.0.2	Test	Met
POW.0.2.3	Power bus must connect power generation subassembly to PDU to other subsystems that need power	Power generation unit must be connected to PDU for conversion to appropriate values before being used to power other subsystem/assemblies	POW.0.2	Demonstration	Met
POW.0.2.4	Power bus should have redundant power paths that activate upon the primary power path failing	In case one power path fails, redundant power paths will ensure continuous operation	POW.0.2	Demonstration	Met
POW.0.2.5	Power bus will use teflon insulated wires	Power bus must be able to handle high temperatures and corrosion from acid on Venus	POW.0.2	Inspection	Met
POW.0.3.0	Power management system shall have redundant voltage and current sensors	Necessary for measuring voltage and current throughout power subsystem	POW.0.3	Demonstration	Met
POW.0.3.1	Power management system shall have redundant temperature sensors	Necessary for sensing when temperature is reaching an unacceptable level	POW.0.3	Demonstration	Met
POW.0.3.2	Power management system shall have Power metering ICs to calculate power energy efficiency	Necessary for making sure power and energy efficiency are at appropriate levels	POW.0.3	Demonstration	Met
POW.0.3.3	Power management system shall have microcontrollers and a data bus to communicate with CDH subsystem	This is necessary for PMS to integrate with CDH and send it power status data so CDH can use autonomous power management algorithms to form decisions regarding the power subsystem	POW.0.3	Demonstration	Met
POW.0.3.4	Power management system shall use thermistors to	Necessary for the PMS to have the capability to take action after being notified that the power subsystem	POW.0.3	Demonstration	Met

		÷	- 5N	<u> </u>		80
	disconnect overheated components following commands from CDH	temperature is at dangerous value				
POW.0.3.5	Power management system shall use circuit breakers, fuses, crowbar circuits, and overvoltage and undercurrent protection circuits to fix detected power issues after receiving commands from CDH	Necessary for the PMS to have the capability to take action after being notified that the power subsystem voltage/current is at a dangerous value	POW.0.3		Demonstration	Met

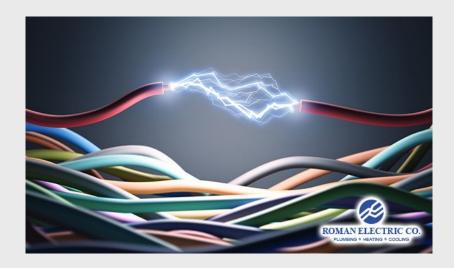


Time (Hours)

Power Generation Subassembly

- The power generation subassembly will be primarily made up of GaAs Triple Junction Solar Cells, more specifically the Azur Space 3G300C - Advanced.
- High efficiency (30%), lightweight, flexible radiation resistant that protects from harmful cosmic rays and particles.
- Subassembly also includes an MPPT, junction box, and thermal and corrosion resistant-coating to protect the components from the Venusian environment.
- TRL is 8, since triple-junction solar cells have been widely used in space missions, with the first probes carrying them being used to explore Venus, along with all other generic electronics
- These will be brought from Azur Space and integrated into the aerobot in-house.

30	258	0.97	12.11%	26.89%	3.26%	Middle	85.1
35	215	0.97	13.49%	28.08%	3.79%	Middle	99.0
40	175	0.98	14.80%	29.01%	4.29%	Middle	112.2
45	137	0.98	23.06%	30.09%	6.94%	Middle	181.4
50	107	0.99	25.09%	39.02%	9.79%	Middle	256.0
55	69	1.01	27.65%	55.95%	15.47%	Middle	404.4
60	19	1.01	30.79%	69.47%	21.39%	Middle	559.2


Power Storage Subassembly

- The main component of the power storage subassembly is made up of solid-state battery cells that can store approximately 1000 Watt-hours of power.
- The QuantumScape QSE-5 was specifically chosen for its light weight and energy density, along with its ability to withstand a wide range of temperatures to account for Venusian environment
- There will be a custom designed battery management system (BMS) that will make interact with thermal to make sure the power storage subassembly does not overheat, and maintain optimal performance while interfacing with CDH
- TRL is 6, since solid-state batteries have been shown to successfully charge and discharge in space on the ISS, but have not been used on Venus missions

Power Distribution Subassembly

- The power distribution subassembly is less of a subassembly but more of the connector between the various subassemblies.
- The wiring of choice for this subassembly will be PTFE (Teflon) insulated wires due to its ability to withstand high temperatures, chemical corrosion, and lightweight.
- Different power buses will connect various components and regulate voltage and current values for optimal component performance.
- The power distribution subassembly will be designed in-house.
- TRL is 8, every aspect of the circuitry and wiring involved has been tried and tested throughout the history of electronics and space exploration

Power Management Subassembly

- The power management subassembly is the brain of the power subsystem, receiving sensor data and commands from CDH and sending out commands for appropriate actions in the subsystem.
- Responsible for collecting information about the state of the subsystem using voltage and current sensing ICs, current sensors, voltage sensors.
- Made up of microcontrollers connected via communication protocols that receive, process, and send data to CDH and the power subsystem.
- Responsible for detecting faults and activating protection circuits.
- TRL is 8, microcontrollers and embedded systems have been comprehensively used in space missions.

Power Subsystem Testing

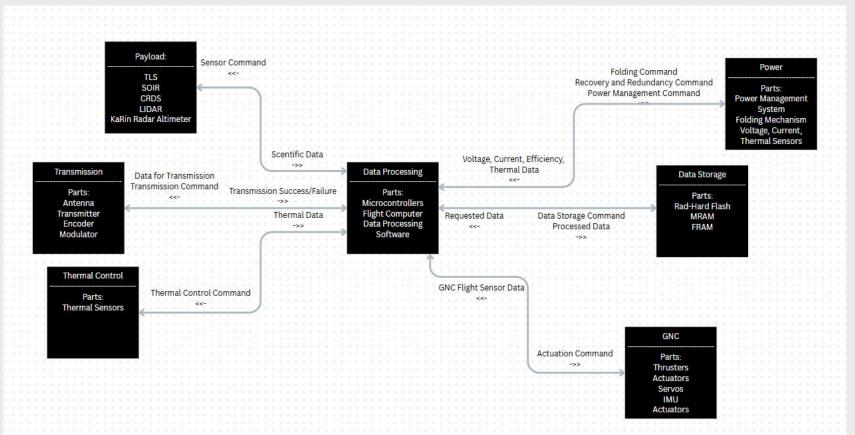
- The main verification methods for the power subsystem will have to be testing, due to the nature of electrical engineering
- Power supplies, signal generators, oscilloscopes, digital multimeters, all of these tools must be used to make sure the correct readings are found in each part of the circuit, and this indicates that testing is required
- Demonstration will be used for the power subsystem unfolding and a mixture of demonstration and analysis will be used for the protections against Venusian environment

Power Subsystem Image Sources (in order of appearance)

- 1) https://www.studyforfe.com/blog/topologies-of-power-electronic-circuits/
- 2) Copied from PDR
- Azur Space. 2019. 3G30C-Advanced Triple-Junction Solar Cell Datasheet. Accessed March 9, 2025. https://www.azurspace.com/images/006050-01-00 DB 3G30C-Advanced. pdf.
- 4) Landis, Geoffrey, and Emily Haag. n.d. "Analysis of Solar Cell Efficiency for Venus Atmosphere and Surface Missions." https://ntrs.nasa.gov/api/citations/20150016298/downloads/20150016298.p
 df.
- 5) "Technology." n.d. QuantumScape. https://www.quantumscape.com/technology/.
- 6) https://romanelectrichome.com/blog/electrical-wiring-tips/
- 7) https://opensource.com/resources/raspberry-pi
- 8) https://www.rigolna.com/products/digital-oscilloscopes/

2.1.3.1 CDH Subsystem Requirements

Table XX: Requirements Table for CDH Subsystem


Req#	Requirement	Rationale	Pare nt Req	Child Req	Validation Method	Req met?
CDH.0	System will be capable of receiving, processing, storing, and sending data, along with issuing commands to other subsystems	Necessary for operations	SYS. 07	CDH.0.0-2	Test	Yes
CDH.1	The system will be capable of transmitting data to the primary spacecraft	Necessary for operations	SYS. 04	CDH.0.0.3	Demonstration	Yes
CDH.0.0	Data processing sub-assembly shall process all information and make decisions based on data	Necessary to process different forms of data into more suitable forms and make decisions with dat	CDH .0	CDH.0.0.0 -4	Demonstration	Yes
CDH.0.1	Data storage sub-assembly shall be able to provide a buffer of 2 hours	Transmissions every hour mean a large memory buffer is not needed	CDH .0	CDH.0.1.0 -4	Testing	Yes
CDH.0.2	Communication sub-assembly shall receive and send information within CDH and from CDH to other subsystems	Aerobot subsystems and subassemblies must be able to communicate with one another	CDH .0	CDH.0.2.0 -4	Demonstration	Yes
CDH.1.0	Transmission sub-assembly will transmit data to spacecraft every hour	Mission provides ideal environment for power generation, frequent transmissions will lower memory requirement	CDH .1	CDH.1.0.0 -4	Demonstration	Yes
CDH.0.0.0	Data processing sub-assembly will use central flight computer to process data	Computer needed to process data, filter, issue commands, etc	CDH .0.0		Inspection	Yes
CDH.0.0.1	Data processing sub-assembly will be protected against Venusian conditions and radiation	Electronics are vulnerable in Venusian conditions, must be protected	CDH .0.0		Demonstration	Yes
CDH.0.0.2	Data processing sub-assembly will use microcontrollers to convert data to a form readable by flight computer	Sensor data needs to be converted to form understandable by flight computer	CDH .0.0		Demonstration	Yes

::

	CDH.0.0.3	Data processing sub-assembly shall interface with communication sub-assembly to receive and sent data in addition to issuing commands	After processing data, data will be used to make decisions that must be carried along communication sub-assembly	CDH .0.0	Demonstration	Yes
	CDH.0.0.4	Data processing sub-assembly will have watchdog-timer to reset processor in case of hardware or software fault	Recovery and redundancy for data processing sub-assembly, since it is vital for operation	CDH .0.0	Test	Yes
	CDH.0.1.0	Memory hardware shall be able to withstand Venusian conditions and radiation	Memory hardware is highly vulnerable to Venusian conditions and radiation, must be protected	CDH 0.1	Demonstration	Yes
88	CDH.0.1.1	Storage subassembly shall organize data with time to ensure efficient transmission	Transmission is driven by the hour, so important to track what information to send	CDH 0.1	Test	Yes
	CDH.0.1.2	Storage subassembly shall be able to store 1 GB of storage	1 GB of storage is more than enough to hold one hour's worth of data with room to spare in case of emergencies	CDH 0.1	Analysis	Yes
	CDH.0.1.3	Storage subassembly shall be able to achieve a minimum of 100,000 write/erase cycles	Must be able to perform that many operations to continuously have data written and erased to be transmitted	CDH 0.1	Test	Yes
	CDH.0.1.4	Storage subassembly should retain data for 15 minutes even with no power	Power can suddenly shut off under unexpected circumstances, important to preserve data	CDH 0.1	Test	Yes
.0	CDH.0.2.1	Communication sub assembly should be able to use I2C, UART, and SPI	Allows for interaction with a variety of microcontrollers, sensors, computers, for comprehensive data	CDH 0.2	Test	Yes
	CDH.0.2.1	Communication sub assembly should send diagnostics from every subsystem every 60 seconds	Ensures rapid fault recovery when something goes wrong	CDH 0.2	Test	Yes
	CDH.0.2.1	Communication subassembly should have <500ms latency for fast fault response and for controlling GNC	Close to simultaneous operating speed necessary for navigation in GNC and to respond to detected issues ASAP	CDH 0.2	Test	Yes
	CDH.0.2.1	Communication sub-assembly shall be resistant to Venusian conditions and space	Communication components are vulnerable to Venusian conditions and	CDH 0.2	Demonstration	Yes

radiation	space radiation			
Communication sub-assembly should have redundant data paths	Redundancy in case data paths fail due to unforeseen circumstances	CDH 0.2	Demonstration	Yes
Transmission subassembly should operate within X-band or (10 GHz)	Transmission must be able to pierce Venusian atmosphere and reach spacecraft while transmitting vast amounts of data, while not being too high such that it is affected by attenuation	CDH 1.0	Analysis	Yes
Transmitter, Antenna, Decoder, and Modulator will make up transmission sub-assembly	These are the main components needed to process data and transmit	CDH 1.0	Inspection	Yes
Transmission subassembly should resist Venusian conditions and radiation	Transmission components, especially antenna, are especially vulnerable to Venusian conditions and space radiation	CDH 1.0	Demonstration	Yes
Transmission will send processed science instrumentation data every hour	It must take processed data from data processing sub–assembly before transmitting	CDH 1.0	Test	Yes
Transmitter shall be capable of transmitting 50 kb	Must be able to transmit all information quickly at intervals of 1 hour	CDH 1.0	Test	Yes
Transmission subassembly will have multiple antennas	Antennas are especially vulnerable because they protrude out of the aerobot	CDH .1.0	Inspection	Yes
	Communication sub-assembly should have redundant data paths Transmission subassembly should operate within X-band or (10 GHz) Transmitter, Antenna, Decoder, and Modulator will make up transmission sub-assembly Transmission subassembly should resist Venusian conditions and radiation Transmission will send processed science instrumentation data every hour Transmitter shall be capable of transmitting 50 kb Transmission subassembly will have	Communication sub-assembly should have redundant data paths Transmission subassembly should operate within X-band or (10 GHz) Transmitter, Antenna, Decoder, and Modulator will make up transmission sub-assembly Transmission subassembly should resist Venusian conditions and radiation Transmission will send processed science instrumentation data every hour Transmitter shall be capable of transmission subassembly will have Redundancy in case data paths fail due to unforeseen circumstances Transmission must be able to pierce Venusian and reach spacecraft while transmiting vast amounts of data, while not being too high such that it is affected by attenuation These are the main components needed to process data and transmit Transmission components, especially antenna, are especially vulnerable to Venusian conditions and space radiation It must take processed data from data processing sub-assembly before transmitting Must be able to transmit all information quickly at intervals of 1 hour Antennas are especially vulnerable	Communication sub-assembly should have redundant data paths Redundancy in case data paths fail due to unforeseen circumstances Transmission subassembly should operate within X-band or (10 GHz) Transmitter, Antenna, Decoder, and Modulator will make up transmission sub-assembly Transmission subassembly should resist Venusian conditions and radiation Transmission will send processed science instrumentation data every hour Transmitter shall be capable of transmission subassembly will have Redundancy in case data paths fail due to unforeseen circumstances CDH (0.2) Transmission must be able to pierce Venusian atmosphere and reach spacecraft while transmitting vast amounts of data, while not being too high such that it is affected by attenuation These are the main components needed to process data and transmit Transmission components, especially valuerable to Venusian conditions and space radiation It must take processed data from data processing sub-assembly before transmitting Transmitter shall be capable of transmit all information quickly at intervals of 1 hour Transmission subassembly will have Antennas are especially vulnerable CDH	Communication sub-assembly should have redundant data paths Redundancy in case data paths fail due to unforeseen circumstances Transmission subassembly should operate within X-band or (10 GHz) Transmission must be able to pierce Venusian atmosphere and reach spacecraft while transmitting vast amounts of data, while not being too high such that it is affected by attenuation Transmission subassembly should resist Venusian conditions and radiation Transmission components needed to process data and transmit Transmission subassembly should resist Venusian conditions and radiation Transmission will send processed science instrumentation data every hour Transmitter shall be capable of transmitting Transmission subassembly will have Antennas are especially vulnerable CDH 1.0 CDH 1.0 Test Test Transmission subassembly will information quickly at intervals of 1 hour Transmission subassembly will have Antennas are especially vulnerable CDH 1.0 Inspection

Command and Data Handling Subsystem

Data Processing and Storage Subassembly

- Both data processing and data storage will be handled by the Krysten-M3 On Board Computer, and a modified version will be purchased from AAC Clyde Space
- It was chosen for its speed, which can process data in a <100 ms loop, and compatibility with a variety of communication protocols and modifiability with custom PCB
- Comes with 4 GB built-in flash and 16 MB MRAM
- Light with high radiation and temperature tolerance with not much power draw
- TRL of 8, this computer has been extensively proven in space as a CubeSat Computer


Communication Subassembly


- The communication subassembly is the intra-vehicle counterpart to the transmission subassembly
- Made up numerous connectors, wires, and digital communication buses that will communicate with other digital devices and utilize ADCs to convert analog data to digital data
- Primary communication protocol used by this subassembly will be SPI, due to its speed and reliability.
- This will be created in house at NASA, due to the need to connect every subsystem, meaning that it is most optimal for a big picture view
- TRL of 8, digital communication protocols and how to receive and transmit data have been tried and tested comprehensively in space

Transmission Subassembly

- The transmission subassembly is made up of four subcomponents, transmitter, antenna, modulator, and encoder
- Digital data stored on flight computer will be converted to analog signals using resistor networks
- Data will be transmitted in the X-band at 10 GHz due to suitability for Venusian environment
- Transmitter is EnduroSat X-Band Transmitter, and Antenna is high performance NASA developed X-band patch antenna
- TRL of 7 for transmitter and TRL of 5 for antenna

CDH Subsystem Testing

- The data storage and processing subsystems must be tested through a variety of software test cases, running through every function and edge case possible to ensure that the software will not fail even in unexpected circumstances
- Data transmission will ideally be tested with an actual orbiting spacecraft, but most likely it will be a receiver from a vast distance that will be tested to see if it can successfully receive the signal
- Data communication must demonstrated to successfully communicate, receive data, provide instructions and then have the other subsystems successfully perform the intended action to the specification of the desired instructions

CDH Image Sources (in order of appearance)

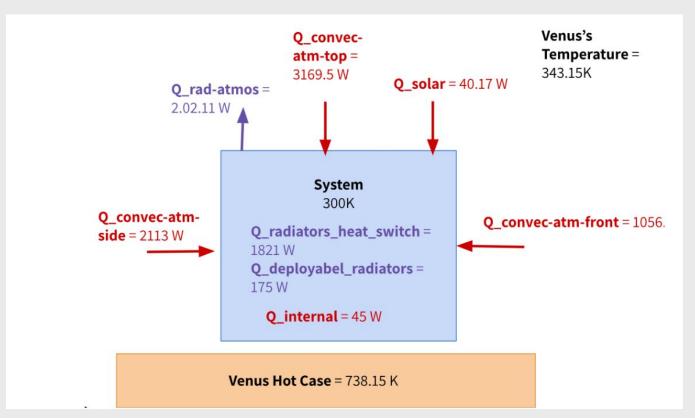
1) Software Architecture Flowchart from PDR

5)

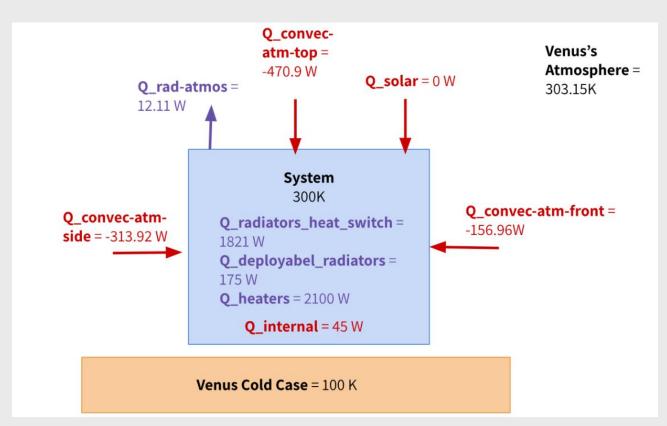
- 2) https://www.satcatalog.com/component/kryten-m3/
- 3) https://www.dreamstime.com/abstract-bus-network-vector-illustration-digital-marketing-commu nication-strategy-abstract-bus-network-concept-image347661937
- 4) https://www.endurosat.com/products/x-band-transmitter/

Thermal Subsystem Overview

- The thermal subsystem will provides thermal insulation and dissipation of heat to allow all subsystems to maintain operational temperatures.
- Two main subassemblies: the External Thermal Protection System and Internal Thermal Control & Insulation Subsystem



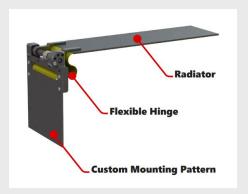
Thermal Requirements


Req#	Requirement	Rationale	Parent Req	Child Req	Verifica tion Method	Validation	Req met?
	The system will have a	In order to maintain					
	optimal operating	system and				Conduct thermal	
	temperature of 300K	equipment				system test with	
THE 00	with a operating range of	13 S. T.	01/0.04		- .	simulated heat and	
THE.00	250-350K	the aerobot	SYS.01		Test		Met
						Conduct a final integration fit check	
	The system will contain					to confirm the	
	all relevant external	Defined by spacing				entire system (in its	
	thermal devices,	allocation defined				stowed	
	heaters, coolers, etc.	through the				configuration) does	
	within a constrained	mechanical		THE01.1	Inspectio	not exceed 1 m in	
THE.01	volume	subsystem	ME 0.3	THE01.2	n	any dimension.	Met
7.		Defined by the	~			Preform sizing	
	The external thermal	mechanical				checks as	
	control units will be no	subsystem as				subsystem is	
	larger than 0.8 m ×	volume allocations			Inspectio	developed before	
THE01.1	0.8 m × 0.3 m	for all required	THE.01	-	n	final system	Met

		subsystems			9 1	integration	6
		Defined by the				Preform sizing	
	The internal thermal	mechanical				checks as	
	control and insulation	subsystem as				subsystem is	
	subsystem shall be no	volume allocations				developed before	
	larger than 0.4 m ×	for all required			Inspectio	final system	
THE01.2	0.4 m × 0.3 m in volume	subsystems	THE.01	(#)	n	integration	Met
						Perform an official	
						mass	
						measurement (e.g.,	
						using calibrated	
						scales) once all	
	All system materials and					components are	
	devices will be chosen					integrated to	
	to minimize weight and	Defined by the				ensure the total	
	ensure a total weight	launch and landing				system mass is	
THE.02	less than 50 kg	provider	SYS.03	THE.02.1	Analysis	under 50 kg.	Me
						Perform an official	
						mass	
	All system materials and					measurement for	
	devices will be chosen	Defined by weight				individual	
	so the thermal system	allocations defined				components so	
	will be under the thermal	T 12				total mass is under	
THE.02.1	control limit of 10 kg	subsystem	THE.02	2	Analysis	10kg	Me

Heat Maps

Heat Maps



External Thermal Protection Subsystem

- External Thermal Protection System utilizes:
 - heat switches(x3)
 - deployable radiator
 - heaters (x2)
- External coating and material:
 - Silver, polished, un-oxidized material (a = 0.04)
 - Zerlauts Z-93 white paint coating (e = 0.92)
- High efficiency, lightweight, low volume,
- TRL = 7
- Suppliers: Sierra Space, Red Wire, OMEGA

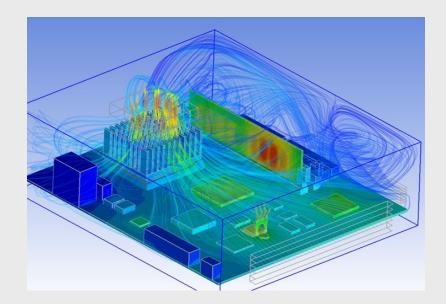
Sierra Space Thin Plate Thermal Switch

Redwire QRad Deployable Radiator

OMEGA Kapton Heaters (KHA-1012)

Internal Thermal Control & Insulation Subsystem

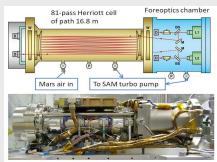
- Internal Thermal Control & Insulation Subsystem utilizes:
 - MLI Blanket (16 layers)
 - Kapton heaters (x1)
- High efficiency, lightweight, low volume,
- TRL = 7
- Suppliers: OMEGA, In-house


OMEGA Kapton Heaters (KHA-1012)

NASA MLI Blanket

Thermal Subsystem Testing

- Verification Methods used:
 - Test
 - o Inspection
 - Analysis


Thermal Image Sources (in order of appearance)

- 1) https://www.nasa.gov/missions/artemis/orion/engineers-refine-thermal-protection-system-for-orions-next-mission/
- 2) Thermal Requirements chart from PDR
- 3) Thermal Heat Flow Maps from PDR
- 4) https://www.sierraspace.com/wp-content/uploads/2024/01/THERMAL-CONTROL-SYSTEMS-Thin-Plate-Heat-Switch.pdf
- 5) https://redwirespace.com/wp-content/uploads/2023/06/redwire-grad-flysheet.pdf
- 6) https://sea.omega.com/th/pptst/KHRA-KHLVA-KHA-SERIES.html
- 7) https://www.esa.int/ESA_Multimedia/Images/2016/08/Multi-layer_insulation_blankets
- 8) https://thermalds.com/thermal-analysis-thermal-modeling/

Payload Subsystem Overview

The payload consists of several scientific instruments that aid in achieving our mission objectives.

- TLS (Tunable Laser Spectrometer)
- SOIR (Solar Occultation in the Infrared Instrument)
- CRDS (Cavity Ring-Down Spectroscopy)
- LIDAR (Light Detection and Ranging)
- KaRIn Radar Altimeter

TLS

Science Instrumentation Requirements

Table 30: Science Instrumentation Requirements

WBS Level	Instrument	Requirement ID	Requirement	Parent Req	Child Req	Notes
Level 1	TLS (Tunable Laser Spectrometer) Mars Curiosity Mission	MIS-1	The TLS shall have a concentration for detection of 1 ppbv and an effective path length of 15 meters.		MIS-1.1	Derived from the Science Traceability Matrix
Level 2	SOIR (Solar Occultation in the Infrared instrument) Venus Express Mission	MIS-1.1	The Spectral Range for the SOIR shall be between 2.32-4.35 micrometars and the resolving power should be between 23,200-43,100 lambda.	MIS-1	SYS-1	Derived from the Science Traceability Matrix
Level 3	CRDS (Cavity Ring-Down Spectroscopy)	SYS-1	The CRDS shall have a pressure stabilization of 1/2000 and an effective path length of 20 km.	MIS-1.1	TCS-1	Derived from the Science Traceability Matrix
Level 4	LIDAR (Light Detection and Ranging)	TCS-1	The LIDAR instrumentation shall have a wavelength of 355 nm & 1064 nm and a vertical resolution of 100m.	SYS-1	TCS-1. 1	Derived from the Science Traceability Matrix
Level 5	KaRIn Radar Altimeter	TCS-1.1	The KaRln Radar Altimeter shall have a range of 900km, a look angle of 4.5 degrees, a radar frequency of 35.75 GHz, and a swath width of 120km.	TCS-1		Derived from the Science Traceability Matrix

Payload Subsystem Manufacturing and Procurement Plans

For the instrumentation, the main suppare:

- 1. NASA's Jet Propulsion Laborato
- 2. Royal Belgian Institute for Space Aeronomy (BIRA-IASB)
- 3. Picarro, Inc
- 4. Teledyne Optech

ואנו		<u>у ат</u>	1(1	<u> </u>)(-		
	Measurement irements					Ir	nstrume	ent			
Table 31: In Physical Parameters	strument Redunda	ancy Matrix Baseline Performance Requirements		LIR (Longwav e Infrared Camera) Akatsuki	TLS Tunable Laser Spectro meter (Mars Curiosit y Mission)	SOIR	CRDS (Cavit y Ring- Down Spect rosco py)	LIDA R (Light Detec tion and Rangi ng)	VIRTI S Infrar ed Spect romet er	KaRin Radar Altim eter	LIBS (Lase r Induc ed Break down Spect rosco py) (LIBS from Mars Curio curio Curio Code, Super Cam, Chem Cam)
Identify trace gases that indicate volcanic outgassing (SO2.	Use spectrometry to identify specific wavelengths of SO2, H2O, CO.	Concentration for Detection	1 ppbv	. 0	•	0	•	•	0	0	0
H2O. CO. OCS. S2, HCl. and HF)	OCS, S2, HCI, and	Effective path length	15 meters						Access of		9000
Identify the signatures and radiation levels of greenhouse	Detect wavelength-specific greenhouse gas emissions and absorptions of heat	Spectral range	2.32-4.35 µm	•	0	•	0	0	0	0	0
greenhouse gases (CO2, CH4, N2O, flourinated gases)		Resolving power	00 lambda/ delta lambda								
Identify chemical makeup and interactions within	Use spectrometry to identify gas composition and chemical	Pressure Stabilization	1/2000	0	•	0	•	•	0	0	0
Venus' clouds	chemical transformations	Effective Path Length	20 km								
Identify cloud particle distribution	Use laser reflectivity to map cloud opacity levels (ex: MOLA)	Wavelength	355 nm (UV) & 1064 nm (IR)	0	•	0	•	•	0	0	0
		Mankanta	100m								
		Vertical resolution	900 km								
Identify fault lines, rift zones.	Use radar and	Range	±4.5°								
and deformation features on	topographic mapping	Look Angle Radar Frequency	35.75 GHz	0	0	0	0	0	0	•	0
Venus' surface		Swath width	120 km								
Identify		Wavelength	1067 nm								
	Use spectroscopy to identify elemental	Laser Frequency	1-10 Hz	0	0	0	0	0	0	0	
lava flow regions and older crust	composition	Resolution	0.15-0.65							, 0	
- Just		Operating range	-40/+30 °C								

Payload Image Sources (In Order of Appearance)

1. https://www.nasa.gov/image-article/tunable-laser-spectrometer-nasas-curiosity-mars-rover/

VULCAN Aerobot – Final Design Summary

Purpose: Designed for Venus exploration via balloon-based deployment

External Components:

- Balloon, Balloon Line
- Pump, Canister, Helium Tank
- Solar Panels (expandable)
- Radiator, KaRIN, CRDS, Patch Antennas, LIDAR, TLS

Internal Components:

- Battery
- CDH Box
- Thermal Insulation & Switches
- Heat Patch
- Electrical Box

VULCAN Full Assembly

Dimensions & Structural Design

Overall Size of Chasis:

• (L × W × H): 900 mm × 950 mm × 970 mm

Solar Panel Design:

7 panels, each 7 mm thick → Total: 49 mm

Solar cells: ~69 mm × 40 mm

TLS (Top Layer System):

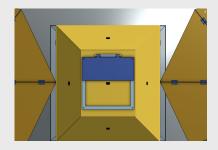
Folded width: 25 mm (Expands via hinged plates)

Radiator:

• Fin: 450 mm × 200 mm

Structure: 450 mm × 450 mm

• Both Fin and Structure had 15mm plates, combined width of 30mm


Include image of chassis, TLS, radiator, or solar panel CADs

LIDAR:

32 mm × 31 mm × 19.2 mm (×5)

Isometric View

Bottom View

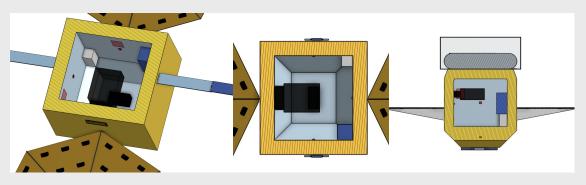
Internal Layout & Power

Battery Volume: 0.0015 m³

Electrical Box: 0.0045 m³

CDH Box: 0.00155 m³

Heat Patches: 120 mm × 100 mm × 0.254 mm


Thermal Switches: $1 \text{ in} \times 1 \text{ in} \times 0.32 \text{ in}$

Thermal Insulation Wall: 170 mm thickness

Power Considerations:

Solar cells optimized for compact stowage

Efficient deployment and energy collection for harsh environments

View of Internal Components

Aerobot Subsystems Masses

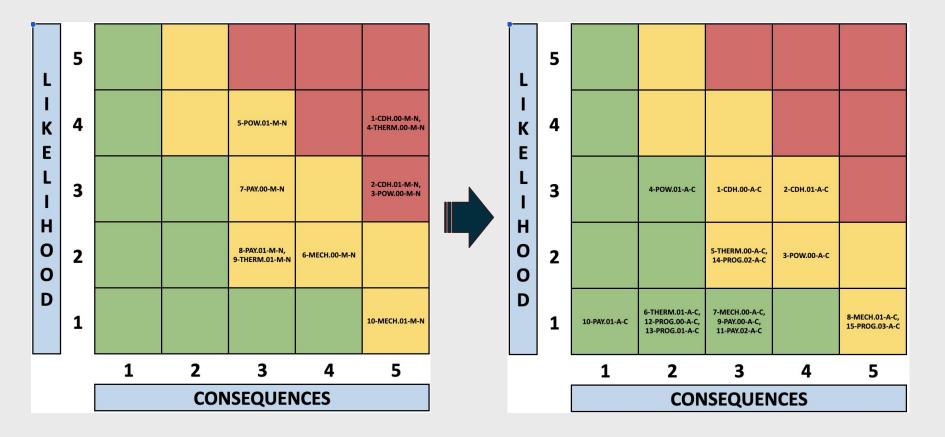
Subsystem	Mass (kg)	Notes
Mechanical	19	Includes chassis, propulsion, structure
Power	8	Includes batteries, MPPT, junction box
Thermal	8	Includes insulation, heat patches, radiator
Electronics (CDH)	2	CDH components and data handling electronics
Instrumentation (TLS, SOIR, CRDS, LIDAR, KaRIn)	11	Sum of all science instruments listed in PDR
Estimated Total	48	Under 50 kg mission requirement limit

Scientific Instrumentation

Instrument	Task	Key Instrument Performance Parameters	Instrument Performance Requirements	Science Objective
Tunable Laser Spectroscopy (TLS)	Identify trace gases that indicate volcanic outgassing	Concentration for Detection, Effective path length	1 ppbv, 15 meters	Determine the state of past and current volcanic activity on the surface of Venus
Solar Occultation in the Infrared instrument (SOIR)	Identify the signatures and radiation levels of greenhouse gases	Spectral range, resolving power	2.32-4.35 µm, 23,200-43,100 lambda/ delta lambda	Determine radiation amongst greenhouse gases in the atmosphere
Light Detection and Ranging (LIDAR)	ldentify cloud particle distribution	Wavelength, vertical resolution	355 nm (UV) & 1064 nm (IR), 100m	Determine the composition and distribution of cloud particles
CRDS (Cavity Ring-Down Spectroscopy)	ldentify chemical makeup and interactions within Venus' clouds	Pressure Stabilization, Effective Path Length	1/2000, 20km	Determine the composition and interactions of cloud particles
KaRIn Radar Altimeter	Identify fault lines, rift zones, and deformation features on Venus' surface	Range, Look Angle, Radar Frequency, Swath Width	900km, ±4.5°, 35.75GHz, 120km	Determine the surface deformation and tectonic activity

Data Collection

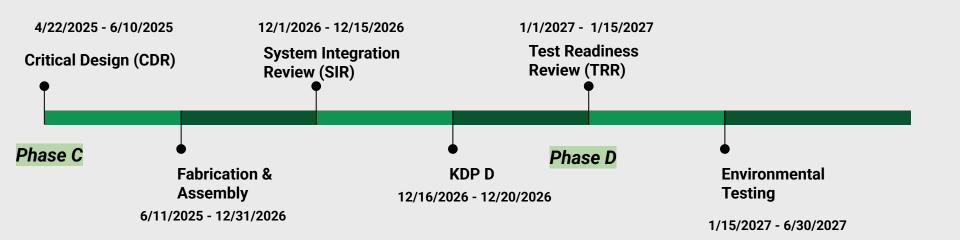
- The system will send and receive data to and from the orbiting Primary Spacecraft for relay back to Earth
- The system will handle all onboard computing requirements including for processing of relayed commands, semi-autonomous decision making, and data storage
- Safe mode to enable data transmission in the case of a malfunction

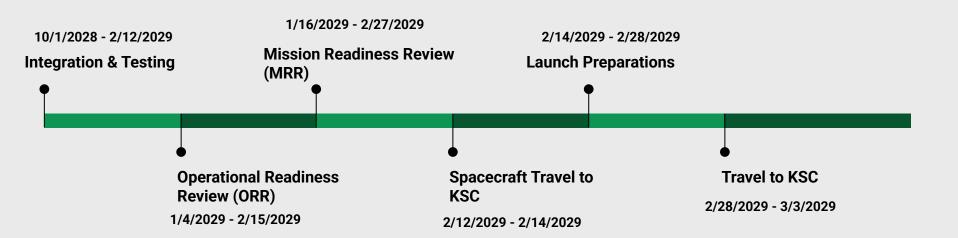

Risk Management

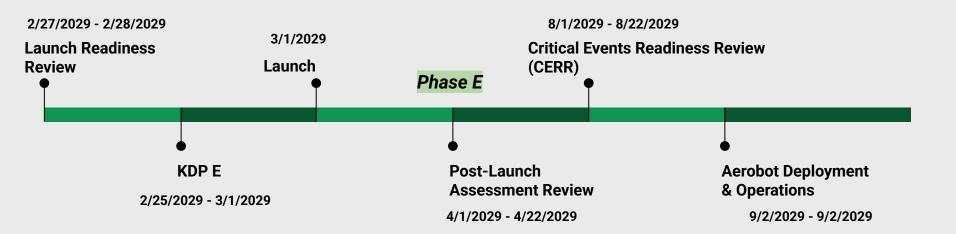
- Risks identified and tracked
 - Quantified with L and C scores (1-5)
 - Mitigation plans detailed and responsibility assigned
 - Changes recorded
- Failure modes tracked via Failure Mode Evaluation and Analysis (FMEA)
 - Risks re-formulated in terms of instrument/system
 - Severity score linked to C score
 - Occurence score linked to L score
 - Detection score tells ability to detect error

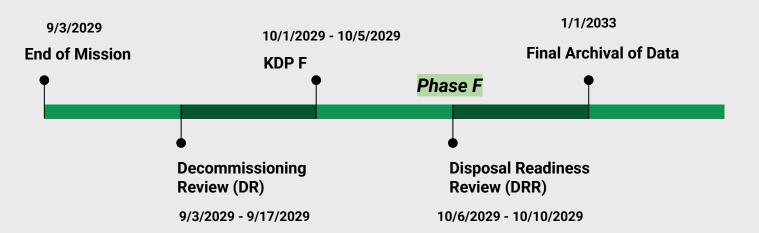
Rank	Risk ID #	WBS Element	Risk Owner	Category	Timeframe	Risk Title	Risk Statement	L	с	Rating	Approach	Trend	Mitigation Plans	Status of Mitigation Plans	Trigger Date	Trigger Event	Closure Date	Closure Event	Status Updates	Matrix Format
11	CDH.00	Artierra	Banson Zhuo	Loss of communication	Short Term	Failure of antenna system	Green field the Versiales almosphere in highly hooffer, there is a possibility of common incapacitating the Australia; anterna, resulding in a failure to relay or receive science date antitive operator community.	3	а	Moderate	Accept (A)	Closed	Mitigation techniques will include redundant antenna designs, resilient enterior material choices, and safe slowing during furbulent periods of operations.	Closed	April 1984, 2025	Savaral days before POR finalization and submission	April 21st, 2025	Submission of the PDR	(03/03/25) Platk L. was changed from a 4 to a 3 to account for higher confidence in proposed mitigation of the property of the property from the property Authorized St. Addition. (4/18/2003). Ratch C changed from 5 to 3 to reflect mitigation plans outlined in accion 2.1.3 of the PDR. Risk chanel.	1-CDH20-A-C
2	CDH 01	Onboard computer	Berson Zhuo	Loss of technical data	Medium Term	Failure of ordered computer	Circen fruit Viersor' sittreophere features high temperatures and corrective substances, there is a possibility of impairment to the orbinand compair respectable for data handling, automated operations, and interfacing with namote operations, which can result in a complete feature to nitrieval mission data employ handleshoot brough seases.	3		Moderate	Accept (A)	Closed	Programd midigation efforts institute metanolant data storage, reconfigurable data specimes, and spatially separated computing modules.	Closed	April 1981, 2025	Several days before POR finalization and submission	April 21st, 2025	Submission of the PDR	(03/30/2025) Risk was augmented for transition from basic to advanced by, Assigned to Adam (04/18/2025) Risk's C was lowered from 5 to 4 to reflect original pians cullined in section 2.1.3 of the PDR, Risk closed	2-C0H/81-A-C
3	POWAS	Onboard ballery	Benson Zhuo	Loss of power	Short Term	Reserve ballary fails to provide sufficient power		2		Moderate	Accept (A)	Closed	Tactics such as solid state between lefon coaled siers, barredly conductive pay filters, redundant power paths, and ofnen have been incorporated into the power subsystem design.	Closed	April 1981. 2025	Several days before POR finalization and submission	April 21st, 2925	Submission of the POR	(05/03/2025): Rosi's L. was changed from a 3 to a 2 and G. was changed from a 5 to a 4 day for obtaid mitigation design suchroupes detailed in section 1.5.3 of the SPEL Assigned to Berson (04/16/2025): Risk accepted.	3-P0W06-A-C
4	POW#1	Deployable solar panels	Benson Zhue	Loss of power	Medium Term	Failure of solar panel deployment	Circen final Version' althoughters final uses high pressures, temperatures and wind speech, there is a possibility of faulty penal deployment due to make depreciation or althoughest disultance, resulting in sub-optimal or non-essivert soler power generation.	3	2	Low	Accept (A)	Closed	Solar panel comotion resistance and heat inference have been incorporated into power designs already, but additional mitigation can be achieved with charged tackup power should enter an entered and reprove teeting of the deployment mechanism.	Closed	April 1981, 2025	Several days before POR finalization and submission	April 21st, 2925	Submission of the PDR	(03/00/0025) Plast's L was changed from 4 to 3 to infant origination design definited in section 1.63 of the SPIR. Assigned to Benom (54/16/2025) Plast's C was changed from 3 to 2 to infant origination design definited in section 2.1.2 of the PDR. Rula accepted	4POWSFAC
5	THERW.50	Cooling system	Rochelle Xerler	Loss of factorical data	Medium Term	Failure of onboard cooling system	Oven the destructive nature of viersal atmosphere, there is a possibility of destrage or overloading to the ordered cooling system responsible for maintaining nominal operating between resulting in estimating should operating be the presentation, resulting in esterilosphic system shuldowns due to excessive temperatures.	2	3	Moderate	Accept (A)	Closed	Multi-layer insulation (MLI): persoive head sinks; phase-Change malerals, conductive head pathways; org/thermosledrist-coolers incorporated into-design	Closed	April 1985. 2025	Savaral days before POR finalization and submission	April 21st, 2025	Submission of the PDR	(03/30/2025) Floki's L. was changed from 4 to 3 to influcturing store design designed in section 1.5.5 of the SPIK. Assigned to Rodralle (04/16/2025) Floki's L. was changed from 3 to 2 and C. changed from 5 to 3 to rathed milipation design detailed in section 2.1.4 of the PDR. Role incomfed	S-THERM SO.A.C
	THERM.01	Heat shinking and insulation	Nothelle Xerier	Loss of power	Medium Term	Breach of external traulation and shielding	Given the volable nature of Versus and the streams of atmospheric entry and deployment from the EDI, there is a possibility of a breach, lettler physical or otherwise in origin; to the external feat shirteding and insulation that helps matrician nominal operating is expensively as the contract of the	,	2	Low	Accept (A)	Closed	Implementation of phase change materials and a protective aeroaned ensure mitigation, wiso-dependent on reschanical mitigation	Closed	April 1981, 2025	Several days before POR finalization and submission	April 21st, 2625	Submission of the PDR	(3/20/2035): Fleti's L. changed from a 2 to a 1 to reflect mitigation efforts detailed in section 1.5.5 of the SFRC Assigned to Robbielle (04/16/2025): Rost's C changed from 3 to 2 to reflect mitigation efforts detailed in section 2.1.4 of the PDRC Risk acceptance.	6-THERM ST.A.C
7	MECH 00	Mechanical frame	Vahin Pichainaj	Loss of lachrical data	Nedum Term	Failure of Associat frame integrity	Given that Venus features highly consolve compounds and a strong Avrilla. Here is a possibility for the structural frame integrity to be compounded, Artist on exact to refurnit instruments and components being exposed to the harsh Venusian strongham	1	3	Low	Accept (A)	Closed	Rehadury materials, multileyer insulation, high temperature materials optimized for high pressure environments all chosen in efforts to mitigate	Ckssed	April 1981, 2025	Several days before POR finalization and submission	April 21st, 2025	Submission of the PDR	(03/03/2025) Risk's I, was changed from 2 to 1 to instant orilization design detailed in section 1.5.2 of the SMC Assigned to Valvin (04/16/2025) Risk's C was changed from 4 to 3 to without design detailed in section 2.1.1 of the PDIS Risk amended.	7-MECHIOS-A-C

Function	Failure Mode	Effects	Sev	Cause	Occ	Prevention	Det	RPN	Actions
	Acidic corrosion	Loss of data/control, possible mission failure	7	Insufficent corrosion resistance in design	5	Choose materials/systems to manage corrosion and rigorously test	4	140	Reroute to redundant antenna
Antenna	Overheating	Loss of data/control, possible mission failure	7	Insufficient heat tolerance in design	5	Choose materials/systems to manage heat and rigorously test	4	140	Reroute to redundant antenna
	Dislodging due to wind	Loss of data/control, possible mission failure	7	Inadequete mechanical anchoring	5	Rigorously test mechanical anchoring	4	140	Reroute to redundant antenna
	Obscurement by heavy clouds	Infrequent or loss of data uplink	7	Inadequate signal frequency	2	Choose uplink frequency unaffected by clouds	4	56	Reroute to redundant antenna
	Acidic corrosion	Loss of data/onboard computing, possible mission failure	ssible mission 7 Insufficient corrosion resist		5	Choose materials/systems to manage corrosion and rigorously test	4	140	Reroute to redundant processors
Onhoard	Overheating	Loss of data/onboard computing, possible mission failure	7	Insufficient heat tolerance in design	5	Choose materials/systems to manage heat and rigorously test	1	35	Reroute to redundant processors, activate reserve cooling system
computer	Overvoltage	Loss of data/onboard computing, possible mission failure	6	Inadequate voltage controls	4	Institute circuit breakers, thermistors, voltage sensors, microcontrollers etc. to control voltage	1	24	Divert from problematic pathways, reroute to redundant processors if needed
	Loss of power	Loss of data/onboard computing, possible mission failure	7	Inadequete power pipelines and or lack of backup power source	4	Institute backup power sources, resilient wiring, and protective covers	2	56	Reroute to redundant processors/power
	Acidic corrosion	Loss of power, possible mission failure	6	Insufficient corrosion resistance in design	4	Teflon coated wires, strong mechanical shell, corrosion resistant materials	4	96	Reroute to redundant power
Onboard battery	Overheating	Loss of power, possible mission failure	6	Insufficient heat tolerance in design	5	Solid state batteries, teflon coated wires, thermally conductive gap fillers, and redundant power paths	1	30	Reroute to redundant power, trigger cooling system
	Mechanical leak	Loss of power, possible mission failure	6	Inadequate shielding and protective covers	3	Strong mechanical shell and protective covering of battery	5	90	Reroute to redundant power


Risk Management Outcomes




Budget Overview


	Personnel	Travel	Outreach	Direct	FY Total
FY 1	\$3,641,734	\$0	\$0	\$46,754,187	\$52,960,921
FY 2	\$3,833,566	\$0	\$0	\$47,969,796	\$54,467,730
FY 3	\$4,236,250	\$30,371	\$425,639	\$36,311,968	\$43,089,152
FY 4	\$4,633,578	\$231,856	\$436,159	\$37,209,412	\$44,670,890
FY 5	\$2,559,487	\$10,624	\$0	\$0	\$2,570,111
FY 6	\$2,240,209	\$0	\$0	\$0	\$2,240,209
Line Total	\$21,144,823	\$272,851	\$861,798	\$168,245,363	\$199,999,013

Total Budget Estimate: \$199,999,013

Image Sources (in order of appearance)

Power	
1)	https://www.studyforfe.com/blog/topologies-of-power-electronic-circuits/
2)	Copied from PDR
3)	Azur Space. 2019. 3G30C-Advanced Triple-Junction Solar Cell Datasheet. Accessed March 9, 2025.
	https://www.azurspace.com/images/006050-01-00_DB_3G30C-Advanced.pdf.
4)	Landis, Geoffrey, and Emily Haag. n.d. "Analysis of Solar Cell Efficiency for Venus Atmosphere and Surface Missions."
	https://ntrs.nasa.gov/api/citations/20150016298/downloads/20150016298.pdf.
5)	"Technology." n.d. QuantumScape. https://www.quantumscape.com/technology/.
6)	https://romanelectrichome.com/blog/electrical-wiring-tips/
7)	https://opensource.com/resources/raspberry-pi
8)	https://www.rigolna.com/products/digital-oscilloscopes/
CDH	
1)	Software Architecture Flowchart from PDR
2)	https://www.satcatalog.com/component/kryten-m3/
3)	https://www.dreamstime.com/abstract-bus-network-vector-illustration-digital-marketing-communication-strategy-abstract-bus-network-concept-image
	<u>47661937</u>
4)	https://www.endurosat.com/products/x-band-transmitter/
Therma	
5)	https://www.nasa.gov/missions/artemis/orion/engineers-refine-thermal-protection-system-for-orions-next-mission/
6)	Thermal Requirements chart from PDR
7)	Thermal Heat Flow Maps from PDR
8)	https://www.sierraspace.com/wp-content/uploads/2024/01/THERMAL-CONTROL-SYSTEMS-Thin-Plate-Heat-Switch.pdf
9)	https://redwirespace.com/wp-content/uploads/2023/06/redwire-grad-flysheet.pdf
10)	https://sea.omega.com/th/pptst/KHRA-KHLVA-KHA-SERIES.html
11)	https://www.esa.int/ESA_Multimedia/Images/2016/08/Multi-layer_insulation_blankets
12)	https://thermalds.com/thermal-analysis-thermal-modeling/

TEMPLATE SLIDES BELOW

	Company Name	Q1 / Month	Year	
	Today's agenda			
\rightarrow	Add a meeting topic			
\rightarrow	Add a meeting topic			
\rightarrow	Add a meeting topic			
\rightarrow	Add a meeting topic			
\rightarrow	Add a meeting topic			
\rightarrow	Add a meeting topic			

	Company Name		Q1 / Month	Year					
	Today's agenda								
\rightarrow	A summary o	f today's meeti	meeting topics						
	1. Add a meeting topic Provide a high-level topic overview.	2. Add a meeting topic Provide a high-level topic overview.	3. Add a meeting topic Provide a high-level topic overview.	4. Add a meeting topic Provide a high-level topic overview.					
	5. Add a meeting topic Provide a high-level topic overview.	6. Add a meeting topic Provide a high-level topic overview.	7. Add a meeting topic Provide a high-level topic overview.	8. Add a meeting topic Provide a high-level topic overview.					

Meeting attendees

Key milestones

Q1

Milestone 1

Briefly highlight the year's most important achievements or events, quarter by quarter.

Q2

Milestone 2

You might have reached a revenue target, or launched a new product or service.

00M

Q3

Milestone 3 Key achievement

For major milestones, draw attention to them with a larger font and a unique background. Make sure you explain why you're highlighting this particular milestone.

Milestone 3A

To show more information about this milestone, use these text blocks.

Milestone 3B

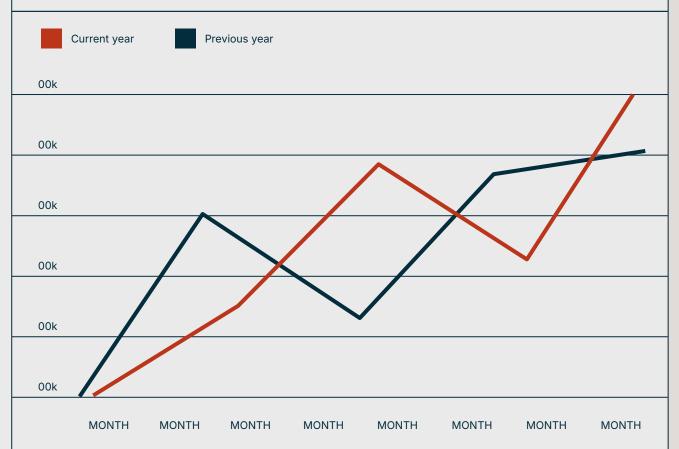
To show more information about this milestone, use these text blocks.

Q4

Milestone 4

To show more than one milestone in a single time frame, stack them like this.

Q4

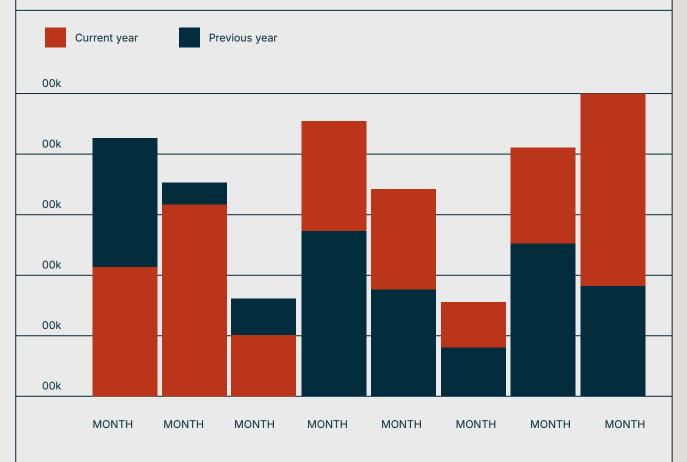

Milestone 5

To show more than one milestone in a single time frame, stack them like this.

00k

Company Name Q1 / Month Year

Year-on-year revenue growth


Add a short headline about your growth

Use this slide to showcase your company's year-on-year (YoY) revenue growth. Write a summary here, then visualize your financial performance in a graph or chart.

You can also mention the milestones from the previous slide if they visibly impacted revenue over the last year.

Company Name Q1 / Month Year

Year-on-year revenue growth

Add a short headline about your growth

Use this slide to showcase your company's year-on-year (YoY) revenue growth. Write a summary here, then visualize your financial performance in a graph or chart.

You can also mention the milestones from the previous slide if they visibly impacted revenue over the last year.

Project Name

Financial highlights

Gross profit for this year

\$00M

\$00M

Previous year

Net profit for this year

\$00M

\$00M

Previous year

Use this slide to provide an at-a-glance overview of your company's financial data. Write a short statement about what the data means for your company.

The metrics suggested here are for reference. Add the financial data that makes sense for your purposes.

Costs

\$00M

Cost of goods sold (COGS) Operating

\$00M

Operating expenses

\$00M

Research & development

00%

Return on investment

Key performance indicators

This year's objectives	Marketing ob	jectives	Commu	ınication	objectives	Business objectives		
	Your marketing go aimed at engaging audience at every whether online or	your target touchpoint,	be both in	nternal an out brand	on goals can d external. awareness or n.	Your business go overarching obje annual revenue t everything contri overall goals.	ctives. From o market share,	
	КРІ	00%	KPI		00%	КРІ	00%	
	00%			00%		00%		
	KPI	00%	KPI		00%	KPI	00%	
	00%			00%		00%		
	KPI	00%	KPI		00%	KPI	00%	
	00%			00%		00%		

Year

	Company Name		Q1 / Month	Year					
	Project Name								
\rightarrow	Project status								
	Status update		Progress						
	Use this slide to explain an one project. What makes this proje impact will it have on company workflow, or brand positioning	ct relevant? What / finances, internal	Tell this project's story. Explain how it got started and how it's going right now. Mention key milestones, deliverables, and achievements. Point out the current stage of this project. What work is being carried out at the moment? What teams are involved?						
	Client	Client name	Department	Department i	name				
	Team	Team name	Lead	Full ı	name				
	Starting date	Date	Current status	S	Status				
	Delivery date	Date	Next milestone		Date				

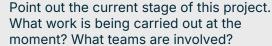
Company Name Q1 / Month Year

Project Name

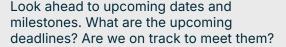
Preparing for the next deadline

Use this slide to explain an ongoing or upcoming project. Tell this project's story. Explain how it got started and what it hopes to achieve.

What makes it relevant? What impact will it have on company finances, internal workflow, or brand positioning?


You can also introduce the teams, leads, and stakeholders involved.

Project progress


Date

Tell this project's story. Explain how it got started and how it's going right now. Mention key milestones, deliverables, and achievements

Date

Date

Date

What are the project goals? What will be produced in the end and who will benefit?

Link to the project deck

"Add a quote that introduces or summarizes the project."

Use this slide to explain an ongoing or upcoming project. Tell this project's story. Explain how it got started and what it hopes to achieve.

What makes it relevant? What impact will it have on company finances, internal workflow, or brand positioning?

You can also introduce the teams, leads, and stakeholders involved.

Status

Kickoff Production Launch

Explain how this project is coming along. Is it on track? What work is being carried out at the moment?

Budget

Projected ROI (return on investment)

Link to project deck

Project status u	ıpdate
Project name	Departmo
Project name	Departme

ent Team

Status Pending review

Client feedback

In progress

On hold

Not started

Approved

Project name

Project name

Project name

Project name

Project name

ent name

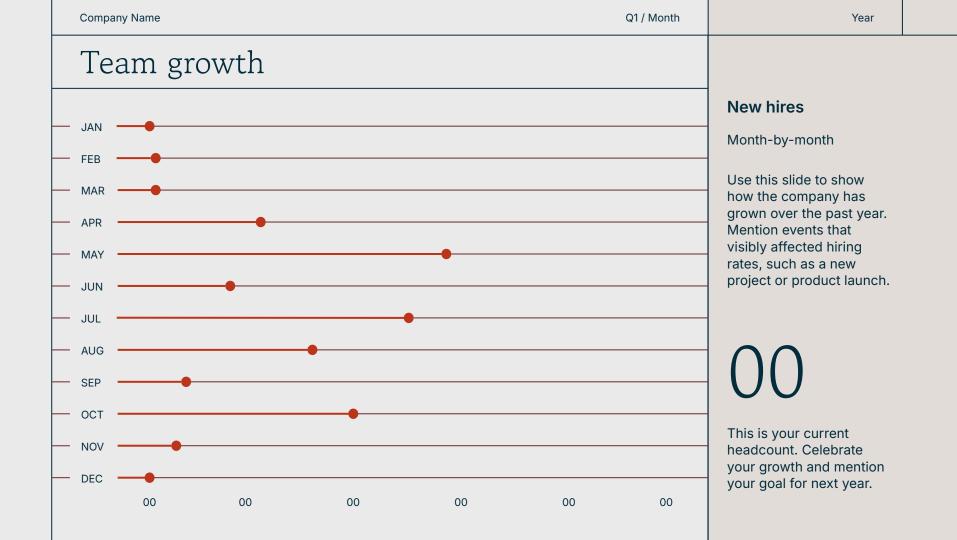
Department name

Department name

Department name

Department name

Department name


Team name Team name

Team name

Team name

Team name

Team name

Team growth

OO Employees

Use this slide to show how your company has grown over the years.

20XX

OO Employees

For each year, add context about what was happening at the company.

20XX

00

Employees

Total headcount

Subtitle

Did a project or product launch require new talent? Did you expand into another market?

This is your current headcount. Celebrate your growth and mention your goal for next year.

20XX

		Company Name		Q1 / Month	Year			
	\Rightarrow	Priority 1	Initiative		Description			
		Based on your business objectives, describe one of	Project owner		Name			
	,	your company's top priorities for next year.	Other details		Details			
		Priority 2 For example, if you want						
		to meet a revenue target, new market expansion might be a priority.	Other details	ative Descripted to the company of t	Details			
		Priority 3	Initiative		Description			
		Each priority should guide your decision-making,	Project owner		Name			
		resource allocation, and overall direction.	Other details		Details			

	Company Name			Q1 / Month	Year					
	Add a statement about the industry challenges you anticipate in the near future									
	Upcoming	Talk about challenges and obstacles that might surface next year. These might be in areas		To get people thinking, suggest a solution or area for growth.						
	challenge 1	such as shifts in the global supply chain, emerging customer trends, or tech adoption.	2	Propose a	nother solution to spark discus	sion.				
	Upcoming	Talk about challenges and obstacles that might surface next year. These might be in areas		To get peo area for g	ople thinking, suggest a solution rowth.	n or				
	challenge 2	such as shifts in the global supply chain, emerging customer trends, or tech adoption.	2	Propose a	nother solution to spark discus	sion.				
	Upcoming	Talk about challenges and obstacles that might surface next year. These might be in areas	To get people thinking, suggest a area for growth.			n or				
	challenge 3	such as shifts in the global supply chain, emerging customer trends, or tech adoption.	2	Propose a	nother solution to spark discus	sion.				

Company Name Q1 / Month Year

Timeline

Upcoming milestones

Concept					Process			Final p			
Month	Month	Month	Month	Month	Month	Month	Month	Month	Month	Month	Month
Phase 1	Phase 1 Phase name										
	Phase 2			Phase nam	е						
						Phase 3	Phase name	Э			
								Phase 4	Phase name		
Phase 1	Dhoop 1					Phase 3			Phase 4		

Phase I

Summarize the months or quarters ahead. Edit the time frame to suit your needs.

rnase z

For each phase or period of time, anticipate future projects, industry events, and other milestones on the horizon.

Phase 3

You can also mention metric or performance goals that you need to meet, as per your business priorities.

Phase 4

Add as many phases, steps, or months as you need. Duplicate this slide if you need more space.

Timeline

Upcoming milestones

	Owner	Status	Month	Month	Month	Month	Month	Month
Upcoming project								
Task 1	® ®							
Task 2								
Task 3								
Upcoming project	•							
Task 1								
Task 2								
Task 3	•							
Upcoming project								

Thanks for participating

Topic for live discussion

Summarize the topic. Refer to what was discussed during the presentation. Then prompt your audience with questions. 2

Topic for live discussion

Summarize the topic. Refer to what was discussed during the presentation. Then prompt your audience with questions.

3

Topic for live discussion

Summarize the topic. Refer to what was discussed during the presentation. Then prompt your audience with questions.

4

Topic for live discussion

Summarize the topic. Refer to what was discussed during the presentation. Then prompt your audience with questions.

If you have any questions, contact: name@example.com